Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Genom ; 4(3): 100511, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428419

RESUMO

The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Alternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata/metabolismo , Mutação , Genômica , Evolução Molecular
2.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37090539

RESUMO

Background and Aims: The microbiome has long been suspected of a role in colorectal cancer (CRC) tumorigenesis. The mutational signature SBS88 mechanistically links CRC development with the strain of Escherichia coli harboring the pks island that produces the genotoxin colibactin, but the genomic, pathological and survival characteristics associated with SBS88-positive tumors are unknown. Methods: SBS88-positive CRCs were identified from targeted sequencing data from 5,292 CRCs from 17 studies and tested for their association with clinico-pathological features, oncogenic pathways, genomic characteristics and survival. Results: In total, 7.5% (398/5,292) of the CRCs were SBS88-positive, of which 98.7% (392/398) were microsatellite stable/microsatellite instability low (MSS/MSI-L), compared with 80% (3916/4894) of SBS88 negative tumors (p=1.5x10-28). Analysis of MSS/MSI-L CRCs demonstrated that SBS88 positive CRCs were associated with the distal colon (OR=1.84, 95% CI=1.40-2.42, p=1x10-5) and rectum (OR=1.90, 95% CI=1.44-2.51, p=6x10-6) tumor sites compared with the proximal colon. The top seven recurrent somatic mutations associated with SBS88-positive CRCs demonstrated mutational contexts associated with colibactin-induced DNA damage, the strongest of which was the APC:c.835-8A>G mutation (OR=65.5, 95%CI=39.0-110.0, p=3x10-80). Large copy number alterations (CNAs) including CNA loss on 14q and gains on 13q, 16q and 20p were significantly enriched in SBS88-positive CRCs. SBS88-positive CRCs were associated with better CRC-specific survival (p=0.007; hazard ratio of 0.69, 95% CI=0.52-0.90) when stratified by age, sex, study, and by stage. Conclusion: SBS88-positivity, a biomarker of colibactin-induced DNA damage, can identify a novel subtype of CRC characterized by recurrent somatic mutations, copy number alterations and better survival. These findings provide new insights for treatment and prevention strategies for this subtype of CRC.

3.
Fam Cancer ; 23(1): 9-21, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38063999

RESUMO

Genetic susceptibility to familial colorectal cancer (CRC), including for individuals classified as Familial Colorectal Cancer Type X (FCCTX), remains poorly understood. We describe a multi-generation CRC-affected family segregating pathogenic variants in both BRCA1, a gene associated with breast and ovarian cancer and RNF43, a gene associated with Serrated Polyposis Syndrome (SPS). A single family out of 105 families meeting the criteria for FCCTX (Amsterdam I family history criteria with mismatch repair (MMR)-proficient CRCs) recruited to the Australasian Colorectal Cancer Family Registry (ACCFR; 1998-2008) that underwent whole exome sequencing (WES), was selected for further testing. CRC and polyp tissue from four carriers were molecularly characterized including a single CRC that underwent WES to determine tumor mutational signatures and loss of heterozygosity (LOH) events. Ten carriers of a germline pathogenic variant BRCA1:c.2681_2682delAA p.Lys894ThrfsTer8 and eight carriers of a germline pathogenic variant RNF43:c.988 C > T p.Arg330Ter were identified in this family. Seven members carried both variants, four of which developed CRC. A single carrier of the RNF43 variant met the 2019 World Health Organization (WHO2019) criteria for SPS, developing a BRAF p.V600 wildtype CRC. Loss of the wildtype allele for both BRCA1 and RNF43 variants was observed in three CRC tumors while a LOH event across chromosome 17q encompassing both genes was observed in a CRC. Tumor mutational signature analysis identified the homologous recombination deficiency (HRD)-associated COSMIC signatures SBS3 and ID6 in a CRC for a carrier of both variants. Our findings show digenic inheritance of pathogenic variants in BRCA1 and RNF43 segregating with CRC in a FCCTX family. LOH and evidence of BRCA1-associated HRD supports the importance of both these tumor suppressor genes in CRC tumorigenesis.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Mutação em Linhagem Germinativa , Predisposição Genética para Doença , Proteína BRCA1/genética , Ubiquitina-Proteína Ligases/genética
4.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894291

RESUMO

Germline pathogenic variants in the DNA mismatch repair (MMR) genes (Lynch syndrome) predispose to colorectal (CRC) and endometrial (EC) cancer. Lynch syndrome specific tumor features were evaluated for their ability to support the ACMG/InSiGHT framework in classifying variants of uncertain clinical significance (VUS) in the MMR genes. Twenty-eight CRC or EC tumors from 25 VUS carriers (6xMLH1, 9xMSH2, 6xMSH6, 4xPMS2), underwent targeted tumor sequencing for the presence of microsatellite instability/MMR-deficiency (MSI-H/dMMR) status and identification of a somatic MMR mutation (second hit). Immunohistochemical testing for the presence of dMMR crypts/glands in normal tissue was also performed. The ACMG/InSiGHT framework reclassified 7/25 (28%) VUS to likely pathogenic (LP), three (12%) to benign/likely benign, and 15 (60%) VUS remained unchanged. For the seven re-classified LP variants comprising nine tumors, tumor sequencing confirmed MSI-H/dMMR (8/9, 88.9%) and a second hit (7/9, 77.8%). Of these LP reclassified variants where normal tissue was available, the presence of a dMMR crypt/gland was found in 2/4 (50%). Furthermore, a dMMR endometrial gland in a carrier of an MSH2 exon 1-6 duplication provides further support for an upgrade of this VUS to LP. Our study confirmed that identifying these Lynch syndrome features can improve MMR variant classification, enabling optimal clinical care.

5.
J Transl Med ; 21(1): 282, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101184

RESUMO

Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n = 135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n = 137; 80×CRCs, 33×ECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA/genética , Neoplasias Colorretais/genética , Síndromes Neoplásicas Hereditárias/genética , Proteína 1 Homóloga a MutL/genética , Metilação de DNA/genética , Instabilidade de Microssatélites
6.
medRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909643

RESUMO

Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n=135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n=137; 80xCRCs, 33xECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.

7.
J Natl Cancer Inst ; 115(4): 468-472, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36610996

RESUMO

Prostate cancer is one of the most heritable cancers. Hundreds of germline polymorphisms have been linked to prostate cancer diagnosis and prognosis. Polygenic risk scores can predict genetic risk of a prostate cancer diagnosis. Although these scores inform the probability of developing a tumor, it remains unknown how germline risk influences the tumor molecular evolution. We cultivated a cohort of 1250 localized European-descent patients with germline and somatic DNA profiling. Men of European descent with higher genetic risk were diagnosed earlier and had less genomic instability and fewer driver genes mutated. Higher genetic risk was associated with better outcome. These data imply a polygenic "two-hit" model where germline risk reduces the number of somatic alterations required for tumorigenesis. These findings support further clinical studies of polygenic risk scores as inexpensive and minimally invasive adjuncts to standard risk stratification. Further studies are required to interrogate generalizability to more ancestrally and clinically diverse populations.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Prognóstico , Predisposição Genética para Doença
8.
J Mol Diagn ; 25(2): 94-109, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36396080

RESUMO

Identifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. Tumor features, individually and in combination, derived from whole-exome sequenced (WES) colorectal cancers (CRCs) and panel-sequenced CRCs, endometrial cancers (ECs), and sebaceous skin tumors (SSTs) were assessed for their accuracy in detecting dMMR. CRCs (n = 300) with WES, where mismatch repair status was determined by immunohistochemistry, were assessed for microsatellite instability (MSMuTect, MANTIS, MSIseq, and MSISensor), Catalogue of Somatic Mutations in Cancer tumor mutational signatures, and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated the dMMR prediction accuracy for i) individual features, ii) Lasso statistical model, and iii) an additive feature combination approach. Panel-sequenced tumors (29 CRCs, 22 ECs, and 20 SSTs) were assessed for the top performing dMMR predicting features/models using these three approaches. For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3% accuracy. The additive feature approach, with three or more of six of MSMuTect, MANTIS, MSIseq, MSISensor, insertion-deletion count, or tumor mutational signature small insertion/deletion 2 + small insertion/deletion 7 achieved 99.7% accuracy. For the panel-sequenced tumors, the additive feature combination approach of three or more of six achieved accuracies of 100%, 95.5%, and 100% for CRCs, ECs, and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs; however, an approach combining tumor features may improve dMMR prediction in both WES and panel-sequenced data across tissue types.


Assuntos
Neoplasias Colorretais , Neoplasias do Endométrio , Feminino , Humanos , Reparo de Erro de Pareamento de DNA/genética , Instabilidade de Microssatélites , Neoplasias Colorretais/genética , Sequenciamento de Nucleotídeos em Larga Escala
9.
PLoS One ; 17(9): e0273783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36103484

RESUMO

The question of whether it is appropriate to attribute authorship to deceased individuals of original studies in the biomedical literature is contentious. Authorship guidelines utilized by journals do not provide a clear consensus framework that is binding on those in the field. To guide and inform the implementation of authorship frameworks it would be useful to understand the extent of the practice in the scientific literature, but studies that have systematically quantified the prevalence of this phenomenon in the biomedical literature have not been performed to date. To address this issue, we quantified the prevalence of publications by deceased authors in the biomedical literature from the period 1990-2020. We screened 2,601,457 peer-reviewed papers from the full text Europe PubMed Central database. We applied natural language processing, stringent filtering and manual curation to identify a final set of 1,439 deceased authors. We then determined these authors published a total of 38,907 papers over their careers with 5,477 published after death. The number of deceased publications has been growing rapidly, a 146-fold increase since the year 2000. This rate of increase was still significant when accounting for the growing total number of publications and pool of authors. We found that more than 50% of deceased author papers were first submitted after the death of the author and that over 60% of these papers failed to acknowledge the deceased authors status. Most deceased authors published less than 10 papers after death but a small pool of 30 authors published significantly more. A pool of 266 authors published more than 90% of their total publications after death. Our analysis indicates that the attribution of deceased authorship in the literature is not an occasional occurrence but a burgeoning trend. A consensus framework to address authorship by deceased scientists is warranted.


Assuntos
Autoria , Editoração , Europa (Continente) , Humanos , Revisão por Pares , PubMed
10.
Eur Urol ; 82(2): 201-211, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35659150

RESUMO

BACKGROUND: Germline variants explain more than a third of prostate cancer (PrCa) risk, but very few associations have been identified between heritable factors and clinical progression. OBJECTIVE: To find rare germline variants that predict time to biochemical recurrence (BCR) after radical treatment in men with PrCa and understand the genetic factors associated with such progression. DESIGN, SETTING, AND PARTICIPANTS: Whole-genome sequencing data from blood DNA were analysed for 850 PrCa patients with radical treatment from the Pan Prostate Cancer Group (PPCG) consortium from the UK, Canada, Germany, Australia, and France. Findings were validated using 383 patients from The Cancer Genome Atlas (TCGA) dataset. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: A total of 15,822 rare (MAF <1%) predicted-deleterious coding germline mutations were identified. Optimal multifactor and univariate Cox regression models were built to predict time to BCR after radical treatment, using germline variants grouped by functionally annotated gene sets. Models were tested for robustness using bootstrap resampling. RESULTS AND LIMITATIONS: Optimal Cox regression multifactor models showed that rare predicted-deleterious germline variants in "Hallmark" gene sets were consistently associated with altered time to BCR. Three gene sets had a statistically significant association with risk-elevated outcome when modelling all samples: PI3K/AKT/mTOR, Inflammatory response, and KRAS signalling (up). PI3K/AKT/mTOR and KRAS signalling (up) were also associated among patients with higher-grade cancer, as were Pancreas-beta cells, TNFA signalling via NKFB, and Hypoxia, the latter of which was validated in the independent TCGA dataset. CONCLUSIONS: We demonstrate for the first time that rare deleterious coding germline variants robustly associate with time to BCR after radical treatment, including cohort-independent validation. Our findings suggest that germline testing at diagnosis could aid clinical decisions by stratifying patients for differential clinical management. PATIENT SUMMARY: Prostate cancer patients with particular genetic mutations have a higher chance of relapsing after initial radical treatment, potentially providing opportunities to identify patients who might need additional treatments earlier.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinases/genética , Prostatectomia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/terapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina-Treonina Quinases TOR
11.
Nat Commun ; 13(1): 3254, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668106

RESUMO

Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 × 10-23 and p = 6 × 10-11, respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers.


Assuntos
Neoplasias Colorretais , DNA Glicosilases , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Glicosilases/genética , Análise Mutacional de DNA , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Mutação
12.
Genome Res ; 32(1): 203-213, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764149

RESUMO

Cryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community has only had access to a good, but incomplete, Cryptosporidium parvum IOWA reference genome sequence. Incomplete reference sequences hamper annotation, experimental design, and interpretation. We have generated a new C. parvum IOWA genome assembly supported by Pacific Biosciences (PacBio) and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species: C. parvum, Cryptosporidium hominis, and Cryptosporidium tyzzeri We made 1926 C. parvum annotation updates based on experimental evidence. They include new transporters, ncRNAs, introns, and altered gene structures. The new assembly and annotation revealed a complete Dnmt2 methylase ortholog. Comparative annotation between C. parvum, C. hominis, and C. tyzzeri revealed that most "missing" orthologs are found, suggesting that the biological differences between the species must result from gene copy number variation, differences in gene regulation, and single-nucleotide variants (SNVs). Using the new assembly and annotation as reference, 190 genes are identified as evolving under positive selection, including many not detected previously. The new C. parvum IOWA reference genome assembly is larger, gap free, and lacks ambiguous bases. This chromosomal assembly recovers all 16 chromosome ends, 13 of which are contiguously assembled. The three remaining chromosome ends are provisionally placed. These ends represent duplication of entire chromosome ends including subtelomeric regions revealing a new level of genome plasticity that will both inform and impact future research.


Assuntos
Criptosporidiose , Cryptosporidium , Criptosporidiose/genética , Cryptosporidium/genética , Variações do Número de Cópias de DNA , Genoma , Humanos , Telômero/genética
13.
Fam Cancer ; 21(4): 399-413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34817745

RESUMO

Germline loss-of-function variants in AXIN2 are associated with oligodontia and ectodermal dysplasia. The association between colorectal cancer (CRC) and colonic polyposis is less clear despite this gene now being included in multi-gene panels for CRC. Study participants were people with genetically unexplained colonic polyposis recruited to the Genetics of Colonic Polyposis Study who had a rare germline AXIN2 gene variant identified from either clinical multi-gene panel testing (n=2) or from whole genome/exome sequencing (n=2). Variant segregation in relatives and characterisation of tumour tissue were performed where possible. Four different germline pathogenic variants in AXIN2 were identified in four families. Five of the seven carriers of the c.1049delC, p.Pro350Leufs*13 variant, two of the six carriers of the c.1994dupG, p.Asn666Glnfs*41 variant, all three carriers of c.1972delA, p.Ser658Alafs*31 variant and the single proband carrier of the c.2405G>C, p.Arg802Thr variant, which creates an alternate splice form resulting in a frameshift mutation (p.Glu763Ilefs*42), were affected by CRC and/or polyposis. Carriers had a mean age at diagnosis of CRC/polyposis of 52.5 ± 9.2 years. Colonic polyps were typically pan colonic with counts ranging from 5 to >100 (median 12.5) comprising predominantly adenomatous polyps but also serrated polyps. Two CRCs from carriers displayed evidence of a second hit via loss of heterozygosity. Oligodontia was observed in carriers from two families. Germline AXIN2 pathogenic variants from four families were associated with CRC and/or polyposis in multiple family members. These findings support the inclusion of AXIN2 in CRC and polyposis multigene panels for clinical testing.


Assuntos
Polipose Adenomatosa do Colo , Anodontia , Neoplasias Colorretais , Humanos , Adulto , Pessoa de Meia-Idade , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Heterozigoto , Células Germinativas/patologia , Mutação em Linhagem Germinativa , Proteína Axina/genética
14.
NPJ Breast Cancer ; 7(1): 153, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887416

RESUMO

Population-based estimates of breast cancer risk for carriers of pathogenic variants identified by gene-panel testing are urgently required. Most prior research has been based on women selected for high-risk features and more data is needed to make inference about breast cancer risk for women unselected for family history, an important consideration of population screening. We tested 1464 women diagnosed with breast cancer and 862 age-matched controls participating in the Australian Breast Cancer Family Study (ABCFS), and 6549 healthy, older Australian women enroled in the ASPirin in Reducing Events in the Elderly (ASPREE) study for rare germline variants using a 24-gene-panel. Odds ratios (ORs) were estimated using unconditional logistic regression adjusted for age and other potential confounders. We identified pathogenic variants in 11.1% of the ABCFS cases, 3.7% of the ABCFS controls and 2.2% of the ASPREE (control) participants. The estimated breast cancer OR [95% confidence interval] was 5.3 [2.1-16.2] for BRCA1, 4.0 [1.9-9.1] for BRCA2, 3.4 [1.4-8.4] for ATM and 4.3 [1.0-17.0] for PALB2. Our findings provide a population-based perspective to gene-panel testing for breast cancer predisposition and opportunities to improve predictors for identifying women who carry pathogenic variants in breast cancer predisposition genes.

15.
Gut ; 70(11): 2138-2149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33414168

RESUMO

OBJECTIVE: Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN: Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS: The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION: Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , DNA Glicosilases , Mutação em Linhagem Germinativa , Proteína 1 Homóloga a MutL , Reparo de Erro de Pareamento de DNA , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome , Sequenciamento do Exoma
16.
J Mol Diagn ; 23(3): 358-371, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383211

RESUMO

Patients in whom mismatch repair (MMR)-deficient cancer develops in the absence of pathogenic variants of germline MMR genes or somatic hypermethylation of the MLH1 gene promoter are classified as having suspected Lynch syndrome (SLS). Germline whole-genome sequencing (WGS) and targeted and genome-wide tumor sequencing were applied to identify the underlying cause of tumor MMR deficiency in SLS. Germline WGS was performed on samples from 14 cancer-affected patients with SLS, including two sets of first-degree relatives. MMR genes were assessed for germline pathogenic variants, including complex structural rearrangements and noncoding variants. Tumor tissue was assessed for somatic MMR gene mutations using targeted, whole-exome sequencing or WGS. Germline WGS identified pathogenic MMR variants in 3 of the 14 cases (21.4%), including a 9.5-megabase inversion disrupting MSH2 in a mother and daughter. Excluding these 3 MMR carriers, tumor sequencing identified at least two somatic MMR gene mutations in 8 of 11 tumors tested (72.7%). In a second mother-daughter pair, a somatic cause of tumor MMR deficiency was supported by the presence of double somatic MSH2 mutations in their respective tumors. More than 70% of SLS cases had double somatic MMR mutations in the absence of germline pathogenic variants in the MMR or other DNA repair-related genes on WGS, and, therefore, were confidently assigned a noninherited cause of tumor MMR deficiency.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/diagnóstico , Neoplasias/genética , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biologia Computacional/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Linhagem , Reprodutibilidade dos Testes , Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Adulto Jovem
17.
Genet Res (Camb) ; 102: e6, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772980

RESUMO

PURPOSE: To characterize the spectrum of BRCA1 and BRCA2 pathogenic germline variants in women from south-west Poland and west Ukraine affected with breast or ovarian cancer. Testing in women at high risk of breast and ovarian cancer in these regions is currently mainly limited to founder mutations. METHODS: Unrelated women affected with breast and/or ovarian cancer from Poland (n = 337) and Ukraine (n = 123) were screened by targeted sequencing. Excluded from targeted sequencing were 34 Polish women who had previously been identified as carrying a founder mutation in BRCA1. No prior testing had been conducted among the Ukrainian women. Thus, this study screened BRCA1 and BRCA2 in the germline DNA of 426 women in total. RESULTS: We identified 31 and 18 women as carriers of pathogenic/likely pathogenic (P/LP) genetic variants in BRCA1 and BRCA2, respectively. We observed five BRCA1 and eight BRCA2 P/LP variants (13/337, 3.9%) in the Polish women. Combined with the 34/337 (10.1%) founder variants identified prior to this study, the overall P/LP variant frequency in the Polish women was thus 14% (47/337). Among the Ukrainian women, 16/123 (13%) women were identified as carrying a founder mutation and 20/123 (16.3%) were found to carry non-founder P/LP variants (10 in BRCA1 and 10 in BRCA2). CONCLUSIONS: These results indicate that genetic testing in women at high risk of breast and ovarian cancer in Poland and Ukraine should not be limited to founder mutations. Extended testing will enhance risk stratification and management for these women and their families.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/patologia , Polônia/epidemiologia , Ucrânia/epidemiologia
18.
Int J Cancer ; 147(8): 2142-2149, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32338768

RESUMO

Few genetic risk factors have been demonstrated to be specifically associated with aggressive prostate cancer (PrCa). Here, we report a case-case study of PrCa comparing the prevalence of germline pathogenic/likely pathogenic (P/LP) genetic variants in 787 men with aggressive disease and 769 with nonaggressive disease. Overall, we observed P/LP variants in 11.4% of men with aggressive PrCa and 9.8% of men with nonaggressive PrCa (two-tailed Fisher's exact tests, P = .28). The proportion of BRCA2 and ATM P/LP variant carriers in men with aggressive PrCa exceeded that observed in men with nonaggressive PrCa; 18/787 carriers (2.3%) and 4/769 carriers (0.5%), P = .004, and 14/787 carriers (0.02%) and 5/769 carriers (0.01%), P = .06, respectively. Our findings contribute to the extensive international effort to interpret the genetic variation identified in genes included on gene-panel tests, for which there is currently an insufficient evidence-base for clinical translation in the context of PrCa risk.


Assuntos
Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/genética , Neoplasias da Próstata/genética , Idoso , Proteína BRCA2/genética , Estudos de Coortes , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Antígeno Prostático Específico/genética , Neoplasias da Próstata/patologia
19.
Fam Cancer ; 19(3): 197-202, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32060697

RESUMO

The advent of gene panel testing is challenging the previous practice of using clinically defined cancer family syndromes to inform single-gene genetic screening. Individual and family cancer histories that would have previously indicated testing of a single gene or a small number of related genes are now, increasingly, leading to screening across gene panels that contain larger numbers of genes. We have applied a gene panel test that included four DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6 and PMS2) to an Australian population-based case-control-family study of breast cancer. Altogether, eight pathogenic variants in MMR genes were identified: six in 1421 case-families (0.4%, 4 MSH6 and 2 PMS2) and two in 833 control-families (0.2%, one each of MLH1 and MSH2). This testing highlights the current and future challenges for clinical genetics in the context of anticipated gene panel-based population-based screening that includes the MMR genes. This testing is likely to provide additional opportunities for cancer prevention via cascade testing for Lynch syndrome and precision medicine for breast cancer treatment.


Assuntos
Neoplasias da Mama/genética , Reparo de Erro de Pareamento de DNA/genética , Mutação em Linhagem Germinativa , Estudos de Casos e Controles , Estudos de Coortes , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Humanos , Masculino , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , New South Wales , Linhagem , Sistema de Registros/estatística & dados numéricos , Vitória
20.
Biotechniques ; 67(3): 118-122, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31267764

RESUMO

We have previously reported Hi-Plex, a multiplex PCR methodology for building targeted DNA sequencing libraries that offers a low-cost protocol compatible with high-throughput processing. Here, we detail an improved protocol, Hi-Plex2, that more effectively enables the robust construction of small-to-medium panel-size libraries while maintaining low cost, simplicity and accuracy benefits of the Hi-Plex platform. Hi-Plex2 was applied to three panels, comprising 291, 740 and 1193 amplicons, targeting genes associated with risk for breast and/or colon cancer. We show substantial reduction of off-target amplification to enable library construction for small-to-medium-sized design panels not possible using the previous Hi-Plex chemistry.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Análise de Sequência de DNA/métodos , Primers do DNA/genética , Eletroforese em Gel de Ágar/métodos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA